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Abstract—A porous medium or a porous material is a 

material containing pores (voids). The pores are typically filled 

with a fluid (liquid or gas). A porous medium is characterized 

by its porosity, permeability, tensile strength, electrical 

conductivity, tortuosity. Many natural substances such as rocks 

and soil (e.g. aquifers, petroleum reservoirs), zeolites, biological 

tissues (e.g. bones, wood, cork), and man-made materials such 

as cements and ceramics can be considered as porous media. 

The flow of fluid through such media is an important process 

that has many applications including in inkjet printing, nuclear 

waste disposal and petroleum and oil industries. The 

fundamental law governing the flow of fluids in porous media is 

given by Darcy’s Law. A 2-D study of fluid flow in a porous 

reservoir is the main objective of this study. The partial 

differential equations resulting from continuity and Darcy’s 

Law are solved using a simplified Finite Volume Method known 

as the Two Point Flux Approximation Method (TPFA Method). 

The code implementation has been carried out using MATLAB. 

The computation has been carried out for two cases: one for a 

coarse grid without smoothing and the other for a fine grid with 

smoothing. The corresponding contours of pressure and mass 

fluxes have been plotted in MATLAB. 

 

I. INTRODUCTION 

A porous medium or a porous material is a material 

containing pores (voids). The pores are typically filled with a 

fluid (liquid or gas). A porous medium is characterized by its 
porosity, permeability, tensile strength, electrical 

conductivity, tortuosity. Many natural substances such as 

rocks and soil (e.g. aquifers, petroleum reservoirs), zeolites, 

biological tissues (e.g. bones, wood, cork), and man-made 

materials such as cements and ceramics can be considered as 

porous media. Fluid flow through porous media is the manner 

in which fluids behave when flowing through a porous 

medium, for example sponge or wood, or when filtering 

water using sand or another porous material. The theory of 

porous flows has applications in inkjet printing and nuclear 

waste disposal technologies.  

A 2-D study of fluid flow in a porous reservoir is the main 

objective of this study. The partial differential equations 
resulting from continuity and Darcy’s Law are solved using a 

simplified Finite Volume Method known as the Two Point 

Flux Approximation Method (TPFA Method). The code 

implementation has been carried out using MATLAB. 

II. MODELLING THE PROBLEM 

A. Governing Equations 

The basic equation describing the process for the fluid flow through 

porous medium is the continuity equation which states that mass is 

conserved 

 
Here the source term q models sources and sinks, that is, outflow 

and inflow per volume. 

For low flow velocities v, filtration through porous media is 

modeled with an empirical relation called Darcy’s law. According 

to Darcy’s law, 

 

Here K is the permeability, µ is the viscosity, g is the gravitational 

constant and z is the spatial coordinate in the upward vertical 

direction. 

To solve for the pressure, Darcy’s law is combined with the 

continuity equation. For simplicity, the porosity φ is assumed 

constant in time and that the flow can be adequately modelled by 

assuming incompressibility, i.e., constant density. 

 

B. Assumptions 

Some of the assumptions taken into consideration while 

modelling the phenomenon of fluid flow through porous 

media are as follows. 

• The flow is considered to be incompressible as the 

fluid is water and under the given conditions of 

pressure and temperature the compressibility effects 

of water can be neglected. 

• The permeability is a cell wise constant that has to 

be defined by the user while calling the function. 

The permeability is a tensor. 

• Only conditions for a source and sink are provided in 

order to avoid other complex effects. 

• Turbulence effects are neglected. 

• The flow is considered to be inviscid and wall 

effects are ignored. 

• There is assumed to be no heat transfer phenomena 

taking place in the control volume. 
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C. Simple Finite Volume Method 

 

In classical finite-difference methods, partial differential 

equations (PDEs) are approximated by replacing the partial 
derivatives with appropriate divided differences between point-

values on a discrete set of points in the domain. Finite-volume 

methods, on the other hand, have a more physical motivation 

and are derived from conservation of (physical) quantities over 

cell volumes. Thus, in a finite-volume method the unknown 

functions are represented in terms of average values over a set 

of finite-volumes, over which the integrated PDE model is 

required to hold in an averaged sense 

To derive a set of finite-volume mass-balance equations for 

above equation, denote by Ωi a grid cell in Ω and consider the 
following integral over Ωi: 

 

Invoking the divergence theorem, assuming that Vw is 

sufficiently smooth, we get a mass balance equation 

 
Here n denotes the outward-pointing unit normal on ∂Ωi . 

To formulate the standard two-point flux-approximation 

(TPFA) finite volume scheme the above equation is 

reformulated into 

 

where λ = K/µw and uw = pw +ρwgz. 

The TPFA scheme uses two points, the cell-averages ui and uj, 

to approximate the flux  

 

The gradient ∇u on γij in the TPFA method is now replaced 

with 

 

where ∆xi and ∆xj denote the respective cell dimensions in the 

x-coordinate direction. 

The following expression for Vij is obtained 

 
In the TPFA method approximation of λ on γij is done by taking 

a distance-weighted harmonic average of the respective 

directional cell permeabilities, 

 

 
The flux Vij is approximated in the TPFA method in the 

following way 

 
In the literature on finite-volume methods it is common to 

express the flux Vij in a more compact form. Terms that do not 

involve the cell potentials Ui are usually gathered into an 

interface transmissibility tij. 

 
The flux Vij is approximated in the TPFA method in the 

following way 

 
In the literature on finite-volume methods it is common to 

express the flux vij in a more compact form. Terms that do not 

involve the cell potentials ui are usually gathered into an 

interface transmissibility tij. 

 
Thus, by inserting the expression for tij into (ii), we see that the 

TPFA scheme for in compact form, seeks a cell-wise constant 

function u = {ui} that satisfies the following system of equations: 

 
This system is clearly symmetric, and a solution is, as for the 

continuous problem. The system is made positive definite, and 

symmetry is preserved, by forcing u1 = 0, for instance. That is, by 
adding a positive constant to the first diagonal of the matrix A = 

[aik], where: 

 
The matrix A is sparse, consisting of a tridiagonal part 

corresponding to the x-derivative, and two off-diagonal bands 

corresponding to the y-derivatives. 

 

D. MATLAB Code 

 

A short MATLAB code for the implementation of (iii) on a uniform 

Cartesian grid. In this code K is a 3×Nx×Ny×Nz matrix holding the 

three diagonals of the tensor λ for each grid cell. The coefficient 

matrix A is sparse and is therefore generated with Matlab’s built-in 

sparse matrix functions. The constant that we use to force u1 = 0 in 

element A(1,1) is taken as the sum of the diagonals in λ. This is 
done in order to control that this extra equation does not have an 

adverse effect on the condition number of A. 

 

function [P,V]=TPFA(Grid,K,q) 
 
Nx=Grid.Nx; Ny=Grid.Ny; Nz=Grid.Nz; N=Nx*Ny*Nz; 
%fprintf('%5i\n',Nx); 
%fprintf('%5i\n',Ny); 
hx=Grid.hx; hy=Grid.hy; hz=Grid.hz; 
L = K.^(-1); 
%fprint('%8.3f\n',L); 
tx = 2*hy*hz/hx;  
TX = zeros(Nx+1,Ny,Nz); 
ty = 2*hx*hz/hy;  
TY = zeros(Nx,Ny+1,Nz); 
tz = 2*hx*hy/hz;  
TZ = zeros(Nx,Ny,Nz+1); 
L(1,1:Nx-1,:,:)+L(1,2:Nx ,:,:); 
L(2,:,1: Ny-1,:)+L(2,:,2:Ny,:); 
L(3,:,:,1: Nz-1)+L(3,:,:,2:Nz); 
TX(2:Nx,:,:) = tx./(L(1,1:Nx-1,:,:)+L(1,2:Nx 
,:,:)); 
TY(:,2:Ny,:) = ty./(L(2,:,1: Ny-
1,:)+L(2,:,2:Ny,:));%fprintf('%8.2f',TY); 
TZ (:,:,2: Nz) = tz./(L(3,:,:,1: Nz-
1)+L(3,:,:,2:Nz));%fprintf('%8.3f',TZ); 
x1 = reshape(TX(1:Nx,:,:),N,1); 
x2 = reshape(TX(2:Nx+1,:,:),N,1); 
y1 = reshape(TY(:,1:Ny,:),N,1);  
y2 = reshape(TY(:,2:Ny+1,:),N,1); 
z1 = reshape(TZ(:,:,1:Nz),N,1);  
z2 = reshape(TZ(:,:,2:Nz+1),N,1); 
DiagVecs = [-z2,-y2,-x2,x1+x2+y1+y2+z1+z2,-x1,-
y1,-z1] 
DiagIndx = [-Nx*Ny,-Nx,-1,0,1,Nx,Nx*Ny] 
A = spdiags(DiagVecs,DiagIndx,N,N) 
A(1,1) = A(1,1)+sum(Grid.K(:,1,1,1)); 
u = A\q 
P = reshape(u,Nx,Ny,Nz) 
V.x = zeros(Nx+1,Ny,Nz); 
V.y = zeros(Nx,Ny+1,Nz); 



V.z = zeros(Nx,Ny,Nz+1); 
V.x(2:Nx ,:,:) = ( P(1:Nx-1,:,:)-
P(2:Nx,:,:)).*TX(2:Nx,:,:); 
V.y (:,2: Ny,:) = (P(:,1:Ny-1,:)-
P(:,2:Ny,:)).*TY(:,2:Ny,:); 
V.z (:,:,2: Nz) = (P (:,:,1: Nz-1)-
P(:,:,2:Nz)).*TZ(:,:,2:Nz); 

III. SIMULATION CASES 

A. Coarse Grid 

Consider a homogeneous and isotropic permeability K ≡ 1 for 

all x ∈ R2 . Place an injection well at the origin and production 

wells at the points (±1, ±1) and specify no-flow conditions at 

the boundaries.  

These boundary conditions give the same flow as if we repeated 

the five-spot well pattern to infinity in every direction. The flow 

in the five-spot is symmetric about both the coordinate axes. 
We can therefore reduce the computational domain to a quarter, 

and use e.g., the unit box Ω = [0, 1]2 .  

The corresponding problem is called a quarter-five spot 

problem, and is a standard test-case for numerical methods in 

reservoir simulation.  

The pressure P is computed by the following lines for a 8 × 8 

grid:  

 

Grid.Nx=8; Grid.hx=1/Grid.Nx; 
Grid.Ny=8; Grid.hy=1/Grid.Ny; 
Grid.Nz=1; Grid.hz=1/Grid.Nz; 
Grid.K=ones(3,Grid.Nx,Grid.Ny); 
N=Grid.Nx*Grid.Ny*Grid.Nz; q=zeros(N,1); q([1 
N])=[1 -1]; 
[P,V]=TPFA(Grid,Grid.K,q); 
%contourf(P,50) 
grid on 
%contourf(V.x,50) 
hold 
contourf(V.y,50) 
 

 
B. Fine Grid 

The number of grid-cells are increased in each direction from 

eight to 32 and consider a slightly more realistic permeability 

field obtained from a log-normal distribution. 

3-point smoothing is applied for the given mesh to “smoothen” 

the discontinuities in the values of pressure gradients, velocity 

and flux. These arise due to the values of permeability (K)  

tensor being different for the cells as determined by the line for 

Grid.k as shown below. The pressure P is computed by the 

following lines for a 32 x 32 grid: 
 

Grid.Nx=32; Grid.hx=1/Grid.Nx; 
Grid.Ny=32; Grid.hy=1/Grid.Ny; 
Grid.Nz=1; Grid.hz=1/Grid.Nz; 
Grid.K=exp(5*smooth3(smooth3(randn(3,Grid.Nx,
Grid.Ny)))); 
N=Grid.Nx*Grid.Ny*Grid.Nz; q=zeros(N,1); q([1 
N])=[1 -1]; 
[P,V]=TPFA(Grid,Grid.K,q); 
grid on 
%contourf(P,50) 
hold 
%contourf(V.x,50) 
contourf(V.y,50) 

 

IV. RESULTS 

The results of the pressure gradient, Vx and Vy contours 
for the coarse grid are as follows: 

 
                    PRESSURE CONTOURS 
 

 
 
               V.x CONTOURS 
 

 
 
               V.y CONTOURS 
 

 
 
 
The results of the pressure gradient, Vx and Vy 
contours for the fine grid are as follows: 
 

                    PRESSURE CONTOURS 
 

 
 
 



V.x CONTOURS 

 

 

 

               V.y CONTOURS 

 

 

 

 

As particles flow in directions of decreasing pressure gradient, the 
pressure decays from the injector in the lower-left to the producer 

in the upper-right corner. This is true for both cases (coarse and 

fine grids). 

For the coarse grid case, since the permeability tensor is constant 

cell-wise it can be seen that the fluxes do not vary much within the 

domain. There is a large variation at the lower-left and upper-right 

corners due to the presence of the source and sink terms. 

For the fine grid case, it can be seen that there are several local 

changes in the value of fluxes. This is because the value of the 

permeability tensor varies for the different cells. Hence, the flux is 

higher locally where the permeability is more and the flux is less 
where the permeability is less. 

However, the overall trend of fluid flow in the direction of 

decreasing pressure gradient (from source to sink) is still valid in 

this case as can be seen in the contour plot of pressure.  

V. CONCLUSION 

 

1. An introductory modelling approach to porous flow media 
has been conducted. 

 

2. The important parameters related to this have been 

discussed. 

 

3. The basic PDE’s have been discussed by considering 

continuity equation coupled with Darcy’s Law for flow in 

porous media. 

 
4.A MATLAB code has been presented for solving 

incompressible fluid flow in porous media using the Two 

Point flux approximation method (Simple Finite Volume 

method). 

 

5.The resulting contours of pressure have been plotted for two 

cases with coarse and fine grids with smoothing applied to it. 

 

VI.  FUTURE SCOPE 

 

• More emphasis can be placed on fluid properties 

 

• Advanced approaches like MPFA can be applied. 

 

• Both orthogonal and hexagonal grids can be considered 

for analysis. 

 

• Spectral and FEM methods can be used 
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